Optimal Subassembly Partitioning of Space Frame Structures for In-Process Dimensional Adjustability and Stiffness
نویسندگان
چکیده
A method for optimally synthesizing multicomponent structural assemblies of an aluminum space frame (ASF) vehicle body is presented, which simultaneously considers structural stiffness, manufacturing and assembly costs and dimensional integrity under a unified framework based on joint libraries. The optimization problem is posed as a simultaneous determination of the location and feasible types of joints in a structure selected from the predefined joint libraries, combined with the size optimization for the cross sections of the joined structural frames. The structural stiffness is evaluated by finite element analyses of a beam-spring model modeling the joints and joined frames. Manufacturing and assembly costs are estimated based on the geometries of the components and joints. Dissimilar to the enumerative approach in our previous work, dimensional integrity of a candidate assembly is evaluated as the adjustability of the given critical dimensions, using an internal optimization routine that finds the optimal subassembly partitioning of an assembly for in-process adjustability. The optimization problem is solved by a multiobjective genetic algorithm. An example on an ASF of the midsize passenger vehicle is presented, where the representative designs in the Pareto set are examined with respect to the three design objectives. DOI: 10.1115/1.2181599
منابع مشابه
Assembly synthesis with subassembly partitioning for optimal in-process dimensional adjustability
Achieving the dimensional integrity for a complex structural assembly is a demanding task due to the manufacturing variations of parts and the tolerance relationship between them. Although assigning tight tolerances to all parts would solve the problem, an economical solution is taking advantage of small motions that joints allow, such that critical dimensions are adjusted during assembly proce...
متن کاملAssembly Synthesis with Subassebly Partitioning for Optimal In-process Dimensional Adjustability
* Corresponding author ABSTRACT Achieving the dimensional integrity for a complex structural assembly is a demanding task due to the manufacturing variations of parts and the tolerance relationship between them. While assigning tight tolerances to all parts would solve the problem, an economical solution is taking advantage of small motions that joints allow, such that critical dimensions are a...
متن کاملAssembly Synthesis for Optimal In-process Dimensional Adjustability Based on a Joint Library
Achieving the dimensional integrity for a complex structural assembly is a demanding work due to the manufacturing variations of parts and the tolerance relationship between them. One way to resolve this problem is fabricating all the parts with tight tolerances, which is not an economical way. Another way, which is preferred, is taking advantage of small motions that joints allow such that cri...
متن کاملAssembly Synthesis for Stiffness, Dimensional Adjustability and Manufacturability
A method that identifies the optimal components set, joint designs and corresponding subassembly partitioning for a Body-In-White (BIW) made of the aluminium space frame (ASF) is presented where the structural stiffness, dimensional integrity and components manufacturing / assembly cost are considered as the objectives. The optimization problem is posed as a simultaneous determination of the lo...
متن کاملOPTIMAL DESIGN OF STEEL MOMENT FRAME STRUCTURES USING THE GA-BASED REDUCED SEARCH SPACE (GA-RSS) TECHNIQUE
This paper proposes a GA-based reduced search space technique (GA-RSS) for the optimal design of steel moment frames. It tries to reduce the computation time by focusing the search around the boundaries of the constraints, using a ranking-based constraint handling to enhance the efficiency of the algorithm. This attempt to reduce the search space is due to the fact that in most optimization pro...
متن کامل